22/25(a)

The University of Sydney

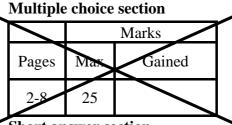
<u>CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)</u>

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2008

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 13 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
9	5			
10	4			
11	4			
12	6			
14	4			
15	6			
16	4			
17	5			
18	10			
19	5			
20	7			
21	4			
22	7			
23	4			
Total	75			

CHEM1405	2008-J-2	June 2008	22/25(a)
• In the spaces provide	d, explain the meanings of the	following terms.	Marks 3
(a) enzyme			
(b) cofactor			
(c) peptide			
(c) peptide			
• Explain in terms of a	hemical bonding and intermol	ecular forces, the following tre	and 2
	$H_4 < I_2 < NaCl < silica (Si$		

CHEM1405	2008-J-3	June 2008	22/25(a)
• What is the bond order Explain your answer.	of the nitrogen-oxygen bone	ds in the nitrate ion, NO_3^- ?	Marks 2
• The observed geometry planar. Explain this of		e N atom in H ₂ NCOCH ₃ is trigo	nal 2

 • Give the ground-state electron configuration of the aluminium atom.
 Marks 2

 Provide one set of valid quantum numbers (n, l, m₁, m_s) for the highest energy electron.
 Provide one set of valid quantum numbers (n, l, m₁, m_s) for the highest energy electron.

 • The osmotic pressure of a solution containing 5.5 g L⁻¹ of a polypeptide is 0.103 atm at 5 °C. Calculate the molar mass of the polypeptide.
 2

 Answer:
 Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• A galvanic cell is made of a Ni ²⁺ /Ni half cell with $[Ni^{2+}] = 1.00 \times 10^{-3}$ M and a Ag ⁺ /Ag half cell with $[Ag^{+}] = 5.00 \times 10^{-2}$ M. Calculate the electromotive force of the cell at 25 °C.		
Answer:		
Calculate the equilibrium constant of the reaction at 25 °C.		
Answer:		
Calculate the standard free energy change of the reaction at 25 °C.		
Answer:		
Indicate whether the reaction is spontaneous or not. Give reasons for your answer.		
Express the overall reaction in the shorthand voltaic cell notation.		
·		

• Calculate ΔG° for	• Calculate ΔG° for the following reaction at 25 °C.			Marks 4		
$5SO_3(g) + 2NH_3(g) \rightarrow 2NO(g) + 5SO_2(g) + 3H_2O(g)$					4	
Data:		S ^o / J K ⁻¹		$\Delta_{\rm f} H^{\circ} / {\rm kJ} { m mol}^{-1}$		
-	SO ₃ (g)	256.		-395.2		
-	NH ₃ (g)	192.		-46.19		
-	NO(g)	210.		90.37		
-	$SO_2(g)$	248.		-296.9		
-	$H_2O(g)$	188.	7	-241.8		
	- \U	1		I		
		Г				
		1	Answer	:		
Is the reaction sp	ontaneous? Gi	ve a reason	for you	ır answer.		
At what tempera	ture does the sp	ontaneity c	hange?			
			Answer	:		

CHEM1405	2008-J-7	June 2008	22/25(a)
• Explain why copper d	issolves in dilute HNO ₃ , but no	ot in dilute HCl?	Marks 2
Nitrous oxide decomp	poses at 25 °C according to the	following equation.	4
2N ₂ O(g	$r \rightarrow 2N_2(g) + O_2(g)$	$K_{\rm p} = 1.8 \times 10^{36}$	
What is the value for	<i>K</i> _p at 40 °C?		
	Answer:		
Is the reaction endothe	ermic or exothermic? Give a re	eason for your answer.	

• Phoseneric a toxic gas prepared by the reaction of carbon monovide with chlorine				e. Marks	
$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$					
The following data were obtained in a kinetics study of its formation at 150 °C.					
	Experiment	Initial [CO] (mol L^{-1})	Initial [Cl ₂] (mol L^{-1})	Initial rate (mol $L^{-1} s^{-1}$)	
	1	1.00	0.100	1.29×10^{-3}	
	2	0.100	0.100	1.33×10^{-4}	
	3	0.100	1.00	1.30×10^{-3}	
	4	0.100	0.0100	1.32×10^{-5}	
Write the	rate law for the	formation of ph	osgene at 150 °	С.	
Calculate	the value of the	rate constant at	150 °C.		
			[
			Answer:		
Calculate	the rate of appea	arance of phosg	ene when [CO]	$= [Cl_2] = 1.3$ M.	
			Answer:		
			i		

CHEM1405	2008-J-9	June 2008	22/25(a)
• Codeine, a cough supp	pressant extracted from crude one pH of a 0.020 M solution of	ppium, is a weak base with a	Marks 2
• A buffer solution is fo	Answer: rmed with 0.250 M CH ₃ COOI	H and 0.350 M CH ₃ COONa.	3
What is the pH of this	buffer solution? (<i>K</i> _a of acetic	acid = 1.8 × 10 ⁻⁵ M.)	
Calculate the pH of the 1.0 L of the buffer solu	Answer: e solution formed when $6.3 \times$ ation.	10^{-2} mol of NaOH is added to	
	Answer:		

Marks • Indicate the reagents used in the laboratory to undertake the following 3 transformations. SΘ A `SH B С s-s **A**: **B**: **C**: • Draw the constitutional formula(s) of the major organic product(s) of the following 7 reactions. 0 $SOCl_2$ +ΟH dilute H₂SO₄ +Ο H[⊕]c<u>atalyst</u> HO CH₃OH OCH₂CH₃ dilute H^{\oplus} ·CH₃ H₃C⁻ OCH₂CH₃

Marks

5

• Using a chemical test, how would you distinguish between the following pairs of compounds? Indicate the reagent you would use and the observations you would make.

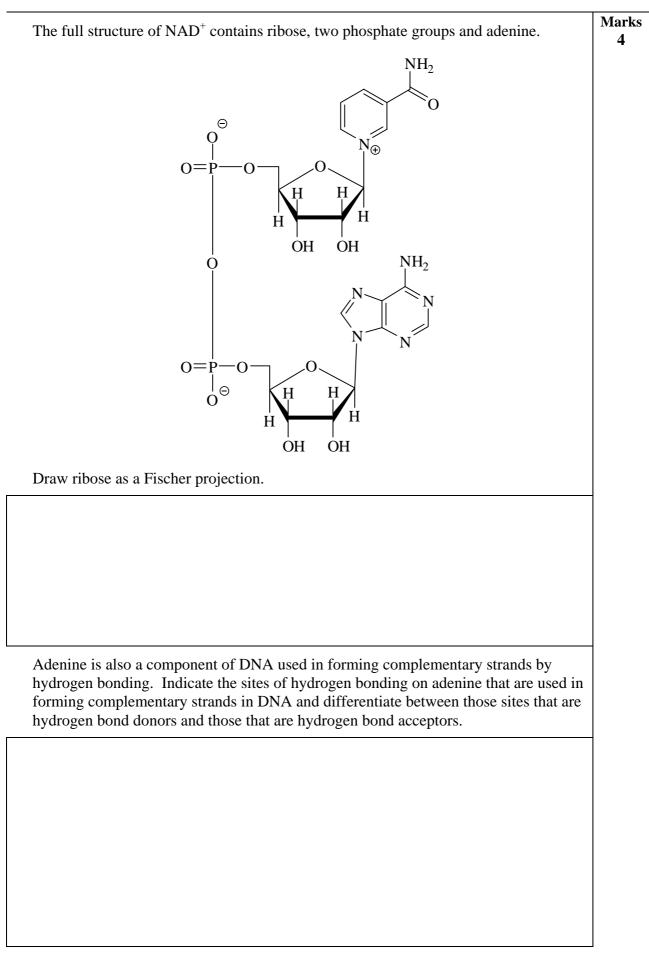
Comj	Reagent and observation	
CH ₂ OH OH OH OH	OH OH OH	
HO COOH HO CH ₃	COOH HO CH ₃	

Using a spectroscopic technique, how would you distinguish between the following pairs of compounds? Indicate the observations you would make.

Compounds	Technique and observation
$\begin{array}{c c} & & & & & \\ & & & \\$	
О О ОН	

7

Marks • NAD⁺/NADH is a biological redox system. The two species may be represented by the structures below.



What are the requirements for a compound to be aromatic? Indicate which of NAD⁺ and/or NADH fulfil these requirements.

Which of NAD^+ and/or NADH will react with cold dilute H^+ in an acid/base reaction? Using the structures above, give the chemical equation for the reaction and a brief explanation for your choice.

Draw the structure of a tautomer of NADH.

THIS QUESTION CONTINUES ON THE NEXT PAGE

Marks • Alanine (ala) and lysine (lys) are two amino acids with the structures given below as 7 Fischer projections. The pK_a values of the conjugate acid forms of the different functional groups are indicated. $pK_{a} = 2.35 \qquad pK_{a} = 2.18$ $pK_{a} = 9.87 \qquad COOH \qquad pK_{a} = 8.95 \qquad COOH \qquad H_{2}N \qquad H_{2$ ala lys Draw the structure of the dipeptide *ala-lys* in its zwitterionic form. Would you expect the dipeptide to be soluble in water? Give a brief reason for your choice. Would you expect the dipeptide to be acidic, neutral or basic? Give a brief reason for your choice. Estimate the isoelectric point of the dipeptide.

Marks

4

• The amino acid, asparagine, was isolated from asparagus juice in 1806. The uncharged form, **Y**, is given below.

$$\mathbf{Y} \qquad \begin{array}{c} \mathbf{O} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{C} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{H}_{2} - \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H} \\ \mathbf{H}_{2}\mathbf{N} - \mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf$$

Draw the constitutional formula of the product(s) formed in the reaction of \mathbf{Y} with the following reagents.

Cold, dilute hydrochloric acid	Cold, dilute sodium hydroxide
Hot, 6 M hydrochloric acid	Hot, 6 M sodium hydroxide

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Dec	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10 ⁹	giga	G				
10^{-12}	pico	р							

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Useful formulas

Quantum Chemistry	Electrochemistry							
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$4.5k_{\rm B}T = hc/\lambda$	$= (RT/nF) \times \ln K$							
$T = 2.898 \times 10^6 / \lambda (\text{nm})$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Colligative properties	Kinetics							
$\pi = cRT$	$t_{1/2} = \ln 2/k$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$							
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$							
Radioactivity	Thermodynamics & Equilibrium							
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$							
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$							
Miscellaneous	Mathematics							
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
$A = \varepsilon c l$	$\ln x = 2.303 \log x$							
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$								

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нешим Не 4.003
3	4 beryllium											5	6 carbon	7 NITROGEN	8 oxygen	9	10
LITHIUM	BERYLLIOM											BORON	CARBON	NIROGEN	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIU Al	M SILICON	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98		30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	IRON Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZINC Zn	GALLIUM	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39			74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 ZIRCONIUM	41 NIOBIUM	42 MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 CADMIU	49	50	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	SRONHUM	YIRIOM	Zr	Nb	MOLYBDENOM	Тс	Ru	Rh	PALLADIUM	Ag	Cd	In Indian	Sn	Sb	Те	I	XeNON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.4	0 114.8		121.75	127.60	126.90	131.30
55	56	57-71		73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	barium Ba		hafnium Hf	TANTALUM Ta	TUNGSTEN	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt		MERCUR Hg	THALLIU	1 LEAD Pb	візмитн Ві	POLONIUM PO	ASTATINE At	radon Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.5			208.98	[210.0]	[210.0]	[222.0]
87	88	89-10		105	106	107	108	109	110	111							
FRANCIUM Fr	radium Ra		RUTHERFORDIU Rf	m dubnium Db	seaborgium Sg	^{вонкіим}	HASSIUM HS	MEITNERIUM Mt	darmstadtium DS	ROENTGENIUM Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
			I				T	1								1	
		7	58 CERIUM	59 praseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 EUROPIUN	1 GADOLI		5 BIUM	66 dysprosium	67 holmium	68 Erbium	69 THULIUM	70 ytterbium	71 LUTETIUM
LANTHANI	DES LANI	IANUM A	Ce	Pr	Nd	PROMETHIOM	SAMARIOM	Eu	GADOLI		b.	Dy	Но	Er	Tm	YITERBIOM	Lu
	138	8.91	140.12	140.91	144.24	[144.9]	150.4	151.96	5 157.	25 158	3.93	162.50	164.93	167.26	168.93	173.04	174.97
		9	90	91	92	93	94	95	96		7	98	99	100	101	102	103
ACTINIDE		NIUM C	THORIUM Th	protactinium Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIU Am	~		ELLIUM B k	CALIFORNIUM Cf	einsteinium ES	FERMIUM Fm	mendelevium Md	NOBELIUM NO	LAWRENCIUM
			232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1			7.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

22/25(b)